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An attempt is made in the paper to describe the behaviour of a nonideal mixer using a model 
based on the concept of random motion of a mass point in a fluid the flow of which in an infini-
te unidimensional space is also generally random. Stochastic differential equations are used for 
the description on the assumption that the process is one of Markov. This procedure enables 
relations to be obtained for the transfer of a scalar quantity under the turbulent motion of the 
fluid. 

The need for a more accurate description of the equipment of chemical technology 
as well as the growing size of such equipment has called for a change from the simple 
concept of an ideal mixer, or piston flow to a more complex concept of a nonideal 
mixer. In the latter, the properties of the batch change both in time and space. In 
view of the turbulent flow encountered often in such equipment the properties of the 
batch must be regarded as random functions of the above mentioned coordinates. 

For description of a nonideal mixer the authors utilize various concepts regarding 
the stochastic character of the process within the equipment leading to the application 
of the theory of random functions: the stochastic operator1,2, random parameter 
functions3, continuous Markov's processes4, discontinuous Markov's processes5, 
stochastic differential equations6 - 8 , or eventually their combination9 - 1 1 . 

This contribution is another attempt in this direction. It starts from the familiar 
concept of the diffusion motion of a particle12 modified by the random motion of 
the fluid surrounding the particle13 '14. It is postulated that both processes may be 
regarded as diffusional Markov's processes15. Such processes may be described by 
stochastic differential equation16 and one can write down corresponding Kolmogo-
rov's equations16 ,17 for the appropriate transitive probability densities. 

From the Bernoulli formulation of the law of averages follows direct proportionality 
between the probability density for the event that the particle under consideration 
appears in a certain position on one hand and concentration of the dissolved compo-
nent at the same position on the other hand. A similar conclusion pertains also to the 

* Part XLIII in the series Studies on Mixing; Part XLII: This Journal 40, 3443 (1975). 
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temperature so that the model enables description of any scalar quantity in a nonideal 
mixer under the random character of the flow. It will be shown that the decisive role 
in affecting the random character of the model behaviour of the scalar quantity plays 
the velocity of the flow of the fluid. 

In order that we may avoid excessive complexity of the pertaining equations and 
clarify the chosen approach we shall confine ourselves to an infinite unidimensional 
space. 

THEORETICAL 

The Motion of the Tracer Particle in the Mixer 

In accord with the just outlined approach we shall consider the following situation: 
A mixer as an infinite tube containing a flowing fluid (Fig. 1). The axis of cylindrical 
symmetry is identical with the axis x. The area of cross section, S, of the mixer is 
a constant, independent of x. The volume of the mixer confined between two cross 
sections at x and x + Ax is designated by AM. 

FIG. 1 
Sketched Motion of Tracer Particle within the Mixer 

Trajectory of center of gravity of the fluid volume AU, trajectory of tracer particle. 

At a time t = 0 a tracer particle, P, is placed into the center of gravity of a volume 
of the fluid, AU. The motion of the tracer particle in the fluid is detectable and its 
mass, mp, is negligible with respect to the mass of the volume AU. The characteristic 
linear dimension of this volume is negligible with respect to the diameter of the mixer. 

As we consider only the unidimensional problem the motion of the particle and the 
center of gravity of the volume AU will be determined solely by the axial coordinate, 
i.e. perpendicular projection onto the axis x. The instantaneous position of the 
particle, Xp(t) is then the superimposed position, Xk(f), of the center of gravity of the 
fluid volume AU, onto the relative distance of the particle, Xr(t), from the center 
of gravity of AU. 

Xp(t) = X,(t) + xr(t). ( / ) 

Collect ion Czechos lov . Chein. Commun. [Vol. 40] (1975] 



A Stochastic Model of a Nonideal Mixer 3783 

The velocity, Fk(V), of the center of gravity of AU is defined by 

Vk{t) = dXk{t)ldt . (2) 

All quantities just written may be generally random functions of time. 
Now it is possible to specify the set of simplifying assumptions enabling a quanti-

tative expression of the particle's motion: 
7) The nonrandom forces acting on AU are such that the resulting force is gene-

rally a function of position and velocity of its center of gravity and (explicitely) of 
time. 

Note: These forces are nonrandom in the sense that they are deterministic functions 
of their arguments. 

2) The volume AU is subject to the action of a random force characterized by im-
pulse equaling the product of the (deterministic) function of generally position and 
velocity of its center of gravity and (explicitely) time times the Wiener's process18, 
Wk(t). 

3) The interaction between the tracer particle and the molecules of the fluid are 
random and such that the relative position of the particle with respect to the center 
of gravity of the volume AU is proportional to the Wiener's process, Wr(t). The latter 
process is then independent of the former. The coefficient of proportionality is a con-
stant. 

4) The velocity of the fluid at the position of the particle does not significantly 
differ from the velocity of the center of gravity of the volume AU. 

Note: This assumption poses, as will be shown in the discussion, certain limitations 
on the quantities in the preceding assumptions. 

5) The residence time of the tracer particle within the mixer is generally a random 
variable depending neither on particle's position nor time required for the particle 
to reach this position. 

With regard to the assumptions /) and 2) one can now write down the equation of 
motion of the center of gravity of the volume AU as a stochastic differential equa-
t ion 1 8" 2 0 

dVk = g{Xk, Vk, t) dt + h{Xk, Vk, t) dWk . (3) 

The function g(.) represents the intensity of the nonrandom force determined by the 
assumption 7). The function h(.) and the Wiener's process Wk{t) characterize the ran-
dom force specified in assumption 2). 

According to the assumption 3) the following stochastic differential equation descri-
bing the relative motion of the particle is also valid. 
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3784 Kudrna, Steidl : 

dXr = ar d Wt [t<T] , (4) 

where aT is a proportionality constant. The condition in the bracket expresses the fact 
that Eq. (4 ) holds with respect to assumption 5) only up to a (random) time instant T 
when the particle disappears. 

With certain requirements put on the functions g( . ) and h(.) regarding their con-
tinuity and boundeness it can be shown that the functions Fk(f) and Xk(t) in Eqs (2) 
and (3) constitute a two dimensional Markov's diffusion process with the correspond-
ing Kolmogorov's forward equation a s 2 1 , 2 2 

i f + 8 IT + T ^ ~ \ Ti ^ x ' " 0 ' ^ 

at ox dv 2 ov 

The transitive probability density, fk(.), is defined by 

1 

fk(x, v; r x°, v°) = lim 
Ax-*o AxAv 
Av-> 0 

. P{x s Xk(t) < x + Ax; v ^ Vk(t) < V + AyjXk(0) = x°; Fk(0) = u0} . (5a) 

With respect to the fact that the mixer is infinite it suffices to consider only the 
initial condition for Eq. (5). The position and velocity of the center of gravity of the 
volume AU at the time t = 0 may be generally random; the initial probability density, 
/ k (x° , must be specified. A solution of Eq. (5) is 

CO 

fk(x, v;t) = f i ( x , v; t\x°, v°)f°k(x°, t,0) dx° dt;0 . (6) 
J J - CO 

The Kolmogorov's equation corresponding to Eq. (4) is written first for the case 
that the tracer particle does not disappear within a finite time interval, i.e. when 
T-> oo. Then we have 

o f ; 1 d 2 f ; 

where 

a , i ^ " 0 ' ( 7 ) 

f'rU,-, <|x?) = lim - i - P{x, g X,{i) <x, + Ax,|Xr(0) = xr°) (7a) 
A x r - > 0 A x r 

is the transitive probability density enabling the distribution of the distance of the 
tracer particle from the center of gravity of AU to be determined. 
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I f at t = 0 this position is identical with that of the center of gravity, the initial 
condition is the Dirac function <5(x°) and the solution is 

"+00 
/ r (x r ; t) = f'r(xt; /|xr°) dxr° = f't(xr; f|0) . (8) 

J — oo 

In case that T takes finite values one can write first with respect to assumption 5) 
a relation for the distribution function for the time of existence of the tracer particle T 
within the mixer 2 3 

d Fjdt=-XFt, (9) 

where Ft(t) = P{t < T } and X is a constant indirectly proportional to the time of 
existence of the particle. The initial condition is clearly Ft(0) = 1. The function Ft(t) 
according to the assumption 5) is independent of particle's position and hence of the 
probability density given by Eq.(8). The probability density of the function XT(t) 
written in Eq. (4) is thus generally given by the expression 

fTl(xT-,t) =fr(xr;t).Ft(t). (10) 

Eqs (7) and (10) indicate that the analytical form of this function can be easily 
found: 

/ r t ( x r ; t) = (2 tzaft ) - 1 ' 2 . exp [ - ( x r 2 / 2 o2Ti) - It] . 

Finally, one can write the relation characterizing the distribution of the random 
function Xp(t), i.e. position of the tracer particle with respect to the mixer. As the 
processes a n d W r(0' according to the assumption 3) are mutually independent, 
the processes Xr(t) and Xjt) are also independent as follows from Eq. (2) and (4). 
With respect to Eq. ( / ) the convolution integral can be written as: 

/ P k(x , v; t) = fk(x - xr, v; t)fn(xr; t) dxr (11) 
J — 00 

It is apparent that the function / p k ( . ) is a two-dimensional probability density 
determining simultaneously the distribution of particle's position, Xp(t), in the mixer 
and the velocity, Fk(f), of the center of gravity of the fluid, AU, while, according 
to the assumption 4) this quantity can be approximately regarded as the fluid velocity 
at the point of the tracer particle. 

In order that we may obtain the unidimensional probability density for the random 
function Xp(t) the conditional probability density at time t is written as 

/p(x|y; t) = / p k ( x , v; t)jfy(v; t) , (12) 

C o l l e c t i o n C z e c h o s l o v . Chern. Commun. [Vol . 40 ] [1975] 
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where/v(.) is the marginal probability density for the velocity Vk(t). This may be found 
by integration of the function fk(), given by Eq. (6), over the whole mixer 

fj(v;t) = | *fk(x,v;t)dx. (13) 
J — co 

The function /p(.) thus indicates the probability of the event that the particle still 
exists at the time t elapsed from the beginning of observation within the volume of 
the mixer AM (the thickness Ax of which approaches to zero) provided that the 
velocity of the center of gravity at the same time instant (and approximately also the 
velocity of the volume AM) takes the value of v: 

fp(x\v; t) = lim — P{x ^ Xp(t) < x + Ax|Kk(f) = v; t < T] . (14) 
Ax-» 0 Ax 

The quantity v may thus be regarded as a parameter of the above distribution at an 
instant t. 

The Relation between the Probability Density for the Particle's Position and 
Concentration or Temperature within the Mixer 

It will be shown now that there exists a simple correlation between the function/p(.) 
and scalar quantities (temperature or concentration) usually used for description 
of some of the phenomena within the mixer: 

Consider a set of N particles of equal mass the motion of which obeys the relations 
given in the precsding paragraph. According to a particular form of the law of ave-
rages — the Bernoulli law — one can write24 for each s > 0 that 

N 
lim P {| £ Ji/N - P{x ^ Xp(t) < x + Ax\Vk(t) = v; t < T} \ ^ e} = 0 . (15) 

N-* oo i = l 

/ ; is an indicator25 of the random event that at a time T the i-th particle fulfils the 
condition within the inner curly brackets. The sum in the numerator thus designates 
the number of particles appearing at a time t within the volume of the mixer AM 
at an instantaneous fluid velocity equal v. 

For a large set of particles we thus have an approximate equation following from 
Eq. (15) taking into account also Eq. (14): 

N rx + Ax 
n = « JV fp(y\v; t) dy . 

i = 1 J x 
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Multiplying this relation by the mass of the particles, mp, and dividing it by the volume 
of the mixer we arrive at the relation between the concentration of the particles, 
c(.), and the probability density defined in Eq. (14) 

i 
f x + Ax 

c(x, V, t) = lim mpn/AM = (NmJS) lim (l/Ax) fp(y\v; t) dy . 
AM-»0 Ax-*0 J x 

From this we have that 

c(x, v, t) = (m/S)/p(x|u; t), (16a) 

which is valid for large N with sufficient accuracy. The symbol m designates the mass 
of all particles which appeared at the instant t = 0 within the mixer. 

If it is assumed that the energy transfer within the fluid obeys an analogous mecha-
nism as the one just described a similar equation for the temperature distribution of 
the fluid, 0(.) , is 

0(x, v, t) = (AHlSQcp)fp(x\v; t), (16b) 

where q and cp designate respectively density and heat capacity of the fluid. AH is the 
total enthalpy of the fluid at the time t = 0. 

Let us denote now a general scalar quantity by the symbol q(.) and write down 
Eqs (16a), (16b) in a single expression 

q(x, v, t) = kfp(x\v; t) . (16) 

The particular form and dimension of the proportionality constant k depends clearly 
on the type of the scalar quantity. 

The Effect of the Velocity of Fluid Flow on the Scalar Quantity 

It will be shown below that the scalar quantity just defined is, according to the under-
lying model concept, significantly affected by the character of the fluid flow. 

Consider a fixed time instant t. From Eq. (16) and (12) it follows that the scalar 
quantity q(x, v, t) at the time t is a function of the parameter v the distribution of 
which at the same instant is described by the probability density fv(v, t) given in 
Eq. (13). The scalar quantity q(.) may thus be though of as a function of the random 
variable Vk at the given instant26 t. 

The distribution of this random variable, however, is defined (see Eqs (12) and (13)) 
for the same region as the scalar quantity q(.) itself. Thus for all instants t ^ 0 one 
can write down formally the scalar quantity q(.) as a nonrandom function of the ran-
dom function of time, Fk(f): q(x, Fk(f), t). 

Col lec t ion Czechos lov . Chem. C o m m u n . [Vol. 40] [1975] 
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The scalar quantity — concentration or temperature — is thus written as a random 
function of time (and position) only if the velocity of the fluid flow is a random func-
tion of time: 

Q ( x , t ) = q ( x , V ( t ) , t ) . on 
The symbol Q(.) designates a scalar quantity as a random function of the above vari-
ables. 

This consideration enables the distribution function, or the probability density of 
the scalar quantity Q(.) to be found because for each t one can write27 

1 
f q ( p ; x , t ) = lim — P { p ^ Q ( x , t ) < p + Ap = 

A p - 0 A p 

^ /•+ 00 

2k 
e x p (—icop) d c o e x p [icoq(x, v, t y ] J \ ( v ; t ) d o , (18) 

where co is the variable of the Fourier transform. 

One can also find easily the expected value of the scalar quantity <2(.) 

E [ Q ( x , t ) ] = E [ q ( x , V k ( t ) , f ) ] = q ( x , v, t ) f v ( v ; t ) d f 

J — 00 

and its variance 

V a r [ Q ( x , t ) ] = E [ q 2 ( x , V k { t ) , f ) ] - E 2 [ q ( x , V k ( t ) , r ) ] = 

q 2 ( x , v, t ) f v ( v , t ) dv - q ( x , v, t ) f y ( v ; t ) dv 

(19) 

(20) 

For the calculation of the correlation and the autocorrelation function of the scalar 
quantity Q(.) one needs the compound probability density for the velocity of the fluid 
at two time instants t and t : 

j \ y , ( v , v'; t , r ) = l i m - i — P{v ^ V k ( t ) < v + Av\Vk(r) = v ' } . 
Av-*o AvAv 
Au'-O 

. P{v' ^ F k ( r ) < v' + A v ' } [0 < T < t] . 

This function can be found by considering the definition of the transitive probability 
defined in Eq. (5a) for the time instants t and t and the probability density determined 
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A Stochastic Model of a Nonideal Mixer 3789 

by Eq. (6) for the time instant r as a double marginal distribution: 

CC+°o 
fvy>(v, v'; t, t ) = /k(x, v; t\x', v'; x)fk(x', v'; z) dx dx' . (21) 

J J — GO 

The relation for the correlation function of the scalar quantity ()(.) then follows 
from the equation 

Cov [Q{x, t) . Q{x', t ) ] = E[q(x, Vk(t), t) . q(x', Vk(x), t ) ] -

-E[q(x, Vk(t), t)] . E[q(xVk(x), t)] , 

where the symbols q{x, Vk(t), t) and q(x', Fk(r), t ) designate the effect of the velocity 
of the fluid flow on the scalar quantity at the time t or T. With the aid of Eqs (19) 
and (21) we thus finally have 

"» C+ 00 
Cov [Q(x, t) . Q(x', f)] = q(x, v, t) q(x', v', r)fyv.(v, v'; t, t ) dv dv' -

J J — co 

I" + OC) f + 00 

q(x, v, t) fv(x, t) dv . q(x', v', t)fv(v', r) dv' . (22) 
v — 00 J — 00 

Putting x = x' in the last equation one obtains an expression for the autocorrelation 
function of the scalar quantity Q(.). 

In the outlined manner one could find also multiple probability densities and even-
tually higher moments of the scalar quantity Q(.). 

Diffusion* Equation for a Scalar Quantity 

On the basis of the model concept developed in the preceding paragraphs it is possible 
to write down formally a differential equation permitting application of these concepts 
to the description of the transport processes involving scalar quantities: From Eqs 
(6) through (10) one obtains first by simple algebraic operations the relation 

dt dx 1 r dx? dvK JktJ 2 dvlK Jkt) 

where fkt = fk(x, v; t) . / r t(x r ; t). Next we exchange the sequence of the variables 
and carry out integration shown in Eq. (11). Provided that / k (x — x r, v; t) . / r t (x r ; t) 

* The term "diffusion" is used in the usual sense of Markov's processes^ 

* 
Collection Czechoslov. Chem. Commun. [Vol. 40] [1975] 
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converges to zero with x r growing to infinity and with respect to Eqs (14) and (16) 
we obtain the fol lowing differential equat ion: 

~ ( q . f v ) + V^(q . / v ) + % . / v ) - K 2 f~2 {q - /v) + 
dt ox dx 

+ ^ ( g * . q . f , ) - ~ ( h > * . c i . f v ) = 0. (23) 
dv 2 dv 

The function g*(.) (and similarly also h2*(.)) is defined by 

g(x - xr, v, t ) f k ( x - xr, v; t)fri(xr; t) dxr j//pk(x, v; t) [/pk(.) > 0] 
CO J g*(x, v, t) = 

UM = °] 

Eq. (23) permits each of its terms to be assigned a simple physical meaning. With 
the same aim it can be integrated over the whole region of the variable v and with 
respect to Eq. (19) t o obta in 

- E[Q{x, 0] + — Cov[Q(x, t) V(t)] + E[V(t)] JL E[Q(x, *)] + AE[0(x, t)] -
dt dx dx 

- 1 o? f-2 £[e(x, ,)] = 0 . (24) 
2 dx 

where 

/»+ GO QO 

Cov [Q(x, t) V(t)] = vq(x, v, t)fy(v; /) dv - q(x, v, t) fv(v; t) dy . 
J — OO J — 00 

JO 

vfv(v; t) dv . 

The last two terms of Eq. (23) vanish af ter integrat ion if we adop t the assumpt ion 
tha t the funct ions fv(.) and djdv / v ( . ) vanish with the variable growing to infinity. 

DISCUSSION 

The model concept described above and the relat ions fol lowing f r o m it enable the 
t ranspor t of a scalar quant i ty — tempera ture or concentra t ion — to be described 
in the si tuat ion under considerat ion, i.e. in a one-dimensional space. This fact s tands 
out clearly mainly f rom Eq. (23) which can be compared with the usually used trans-
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port equations. The expression q . / v may be interpreted as the product of the scalar 
quantity q(x, v, t) and the coefficient fy(y, t) characterizing the "behaviour" of the 
parameter v. The latter, as has bsen shown, characterizes the effect of the velocity of 
fluid flow on the scalar quantity. 

The first term in Eq. (23), characterizing the unsteadiness of the process, may be 
regarded as an accumulation term of the scalar quantity. The third term of the same 
equation expresses generally the loss of the scalar quantity either due to a first order 
chemical reaction, in case that q(.) stands for concentration, or the loss of heat in case 
of temperature. The fourth term is the usual expression for molecular diffusion. The 
second term of Eq. (23) may be regarded as the expression of the convective transfer. 
Formally it symbolizes the relation between the velocity of the fluid flow and the scalar 
quantity. It is apparent that had this term not been present, Eq. (23) could be separa-
ted into two mutually independent relations for q(.) and /v(-)-

The fifth and the sixth term of the equation describe quantitatively the fluid velo-
city: As it is indicated by assumptions / ) — 4) and the relations following from these, 
the fifth term expresses the effect of nonrandom forces and the sixth term that of 
random forces acting on the fluid. The last but one term may thus be thought of as 
the source of convective (nonrandom) flow and the last one as the source of random, 
i.e. turbulent, velocity fluctuations. 

Eq. (2,4) following f rom Eq. (23) is then the usually used expression for description 
of the transport of a scalar quantity under a unidimensional turbulent flow of the 
fluid13. 

Eq. (23) thus permits description of the simultaneous effect of all means of transport 
usually taken into account: molecular, turbulent and convective plus the expression 
for the source term of the scalar quantity. The latter, of course, could not be expressed 
in the general form owing to the character of the model concept. 

Also the assumption enabling the exchange of the velocity of the center of gravity 
of the fluid volume AU by the fluid velocity at the tracer particle is generally valid 
only if the forces acting on the center of gravity (see assumption 1) and 2) are explicit 
functions of position Xk(t) and hence that the fluid velocity is not a function of the 
coordinate of position. In the opposite case this assumption can be adopted only if 
the random motion of the particle according to the assumption 3) is negligible with 
respect to the random motion of the fluid volume AU. In view of the consideration 
in the preceding paragraphs this means that molecular transport of the scalar quantity 
in each instant must be negligible with respect to the turbulent transport. 

The presented model concept thus enables, despite of the just described limitations, 
the effect of the hydrodynamics of the fluid flow to be described on the transfer of 
a scalar quantity. For description of a definite situation the functions g{.) and h(.) 
in Eq.(3) or derived equations must be, of course, known. This can be accomplished 
for instance on the basis of additional concrete physical concepts regarding the fluid 
flow within the equipment in question. 

Collection Czechoslov. Chem. Commun. [Vol. 40] [1975] 



3792 Kudrna, Steidl: 

In principle, the estimates of these functions describing the motion of the center 
of gravity of the volume AU can be found experimentally with the aid of a suitable 
tracer particle29. This particle must follow with sufficient accuracy the motion of this 
volume of the fluid. 

LIST OF SYMBOLS 

c volume concentration (kg m 3 ~ ) X coordinate of position (random func-
CP specific heat of fluid (J kg - 1 K - 1 ) tion) (m) 
F distribution function X coordinate of position (m) 
f probability density £ positive number 
9 intensity of nonrandom force (m s ~ 2 ) X inverse mean residence time of tracer 
H enthalpy (J) particle ( s - 1 ) 
h function characterizing random force Q fluid density (kg m - 3 ) 

( m s ~ 3 / 2 ) characteristic of relative motion of 
I indicator tracer particle (m s - 1 ' ' 2 ) 
k proportionality constant 6> temperature (K) 

part of mixer's volume (m3) T time (s) 
m mass (kg) CO Fourier transform parameter 
N total number of tracer particles 
n number of tracer particles in volume Subscripts 

AM 
Subscripts 

P tracer particle i element of sequence 
P scalar parameter k fluid 
Q scalar quantity (random function) P particle 
Q scalar quantity (? scalar quantity 
S area of cross section of mixer (m2) r relative position of tracer particle 
T residence time of tracer particle (s) t residence time of tracer particle 
t time (s) 
AC/ small volume of fluid (m3) Superscripts 
V velocity (random function) ( m s " 1 ) 
V velocity (m s - 1 ) 0 initial 
W Wiener's process (random function) 

(s 1 / 2 ) 
transitive 
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